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Abstract. In this paper we present an algorithm for solving nonconvex quadratically constrained
quadratic programs (all-quadratic programs). The method is based on a simplicial branch-and-bound
scheme involving mainly linear programming subproblems. Under the assumption that a feasible
point of the all-quadratic program is known, the algorithm guarantees anε-approximate optimal
solution in a finite number of iterations. Computational experiments with an implementation of
the procedure are reported on randomly generated test problems. The presented algorithm often
outperforms a comparable rectangular branch-and-bound method.
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1. Introduction

Quadratically constrained quadratic programs have a wide variety of applications.
All bilinear optimization problems, for example pooling problems in petrochem-
istry [23], modularization of product sub-assemblies [17], and special classes of
structured stochastic games [6], can be interpreted as quadratic problems. Boolean
variables may also be represented by concave quadratic constraints:xi ∈ {0,1} ⇔
x2
i − xi ≥ 0, xi ∈ [0,1].

The so-calledPacking Problem, i.e., the problem of maximizing the minimum
pairwise Euclidean distance ofn points, which are contained in the unit square, can
be formulated as a global optimization problem with concave quadratic constraints:
max{t : t − ‖xi − xj‖22 ≤ 0 , 1 ≤ i < j ≤ n , xi ∈ [0,1]2 , i = 1, . . . , n}. For
applications of this special problem we refer to the book of Conway and Sloane
[4]. A related class of global optimization problems are minmax location problems
[14] which also lead to quadratic constraints.

Chance-constrained problems, which, for example, are involved in production
planning or portfolio optimization [5, 14, 26], provide further applications of this
type of optimization problem. Other applications include the fuel mixture problem
encountered in the oil industry [15], and also placement and layout problems in
integrated circuit design (see [2, 3] and references therein for further applications).
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In this paper we will consider the general all-quadratic program (QP)

minxT Q0x + (d0)T x

xTQix + (di)T x + ci ≤ 0, i = 1, . . . , p (1)

Ax ≤ b
whereQi (i = 0, . . . , p) are realn×n symmetric matrices,di ∈ IRn (i = 0, . . . , p),
ci ∈ IR (i = 1, . . . , p), A is a realm × n matrix andb ∈ IRm. The setP = {x ∈
IRn : Ax ≤ b} is assumed to be a nonempty polytope, i.e.,P is bounded. In the
following we assume that fori ∈ {0, . . . , p}, realn × n symmetric matricesCi

andDi are known with the properties thatCi is a positive semidefinite matrix,Di

is a negative semidefinite matrix andQi = Ci + Di. There are different ways to
construct such matrices, for example spectral decomposition (see, e.g. [13]). For
brevity we define (usingc0 = 0)

f i(x) := xT Qix + (di)T x + ci , i = 0, . . . , p

D := {x ∈ P : f i(x) ≤ 0 , i = 1, . . . , p} .
Note that in general the feasible regionD is nonconvex and possibly disconnected.

By using the fact thatf i(x) = xT Cix+(di)T x+ci−xT (−D)ix, i = 0, . . . , p
is a d.c. function, Problem (1) can be interpreted as a d.c. problem. Therefore
one possible approach for solving (1) is to apply algorithms for solving general
d.c. optimization problems. See Horst et al. [10, 12] and the relevant article in [9]
for the framework of d.c. optimization and [15] for a d.c. algorithm for a special
quadratically constrained optimization problem.

Another possible approach for solving (1) results from the fact that a nonconvex
all-quadratic optimization problem can be transformed to a semidefinite program-
ming problem (SDP) with an additional rank-one constraint (see [18]). Omitting
the rank-one constraint leads to the widely explored (SDP) relaxation of Problem
(1) (see [7, 21, 22] and references therein). Using this relaxation Ramana [18]
presents a cutting plane technique for solving all-quadratic problems (see also [11]
for an extension of this approach).

Most of the methods in the literature rely on the bilinearity of the quadratic
functions. By substitutingyi = Qix, each functionf i(x) can be interpreted as a bi-
linear functionf i(x, yi). Visweswaran and Floudas [24, 25] propose an algorithm
for solving Problem (1) through a series of primal and relaxed dual problems. This
method is designed to solve certain classes of nonconvex optimization problems
[24], but as shown in [25], it is possible to enhance the computational performance
of this algorithm in the quadratic case. The subproblems are considerably more
tractable in this special case.

An approach for solving polynomial programming problems, i.e., an optimiza-
tion problem with a polynomial objective function and polynomial constraints, and
so especially for solving bilinear programs, was presented by Sherali and Tuncbilek
[20]. Under the assumption that additional box constraints for the variables are
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known, they generate nonlinear implied constraints which are included in the orig-
inal problem. Then they linearize the resulting problem by defining new variables,
one for each distinct nonlinear term. By embedding this reformulation-linearization
technique in a rectangular branch-and-bound scheme they get a convergent algo-
rithm (see [19] for the reformulation-linearization technique in the bilinear case).
In other words they combine a linear outer approximation of the feasible set with a
branch-and-bound scheme for solving this global optimization problem.

In the algorithm of Al-Khayyal et al. [2, 3] for solving all-quadratic programs
with additional box constraints, the authors also combine an outer approximation
technique with a rectangular branch-and-bound scheme. First each quadratic func-
tion f i(x) is interpreted as a bilinear functionf i(x, yi). Each bilinear partxjyij of
f i(x, yi ) is then bounded from below by its convex envelope [1] and from above
by the corresponding concave envelope. By substitutingQix = yi one obtains a
linear subproblem with respect to the used rectangle, where this subproblem has
n+(p+1)n variables and 4pn+2n+p+m+2n constraints. Linear subproblems
are then used to calculate the lower bounds in the rectangular branch-and-bound
algorithm (for details, we refer to [2]).

In our algorithm, we use the same ideas as Al-Khayyal et al. mentioned above.
By using simplices, instead of rectangles, as partitioning elements, we obtain linear
subproblems with onlyn variables andp + m + n + 1 constraints. As the com-
putational results show, we thus often have a better performance with respect to
run-time than the rectangular algorithm by Al-Khayyal et al. has, particularly in
the cases wherep ≥ n.

In the next section, a linear relaxation of Problem (1) is derived with respect to a
given n-simplex S = [v0, . . . , vn], where [v0, . . . , vn] :=
{x ∈ IRn : x = ∑n

i=0 λixi, λi ≥ 0,
∑n

i=0 λi = 1} denotes the convex hull of the
set{v0, . . . , vn}. This relaxation is used to calculate a lower bound on the optimal
value of Problem (1) which is necessary to develop a branch-and-bound algorithm.
A simplicial branch-and-bound algorithm for solving Problem (1) is presented in
Section 3. In Section 4, we prove that the algorithm will stop after a finite number
of steps, if no feasible point exists. For the caseD 6= ∅ any accumulation point
of the sequence of points generated by the algorithm is an optimal solution. This
is shown in the convergence theorem. Section 5 reports on results of computa-
tional comparism between our simplicial algorithm and the rectangular algorithm
of Al-Khayyal et al. [2].

2. A linear programming relaxation over a simplex

In this section, we construct a linear programming relaxation of the Problem (1)
with the additional constraint thatx must lie in ann-simplex S. Therefore, let
S = [v0, . . . , vn] be ann-simplex withP ∩ S 6= ∅ and letWS be the realn × n
matrix with columns(vi − v0) (i = 1, . . . , n). Then we can rewrite (1) as an all-
quadratic program over the standard simplexB = {λ ∈ IRn : eT λ ≤ 1, λi ≥ 0 (i =
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1, . . . , n)} by substitutingx = v0+WSλ in the following way

min(WSλ)
TQ0WSλ+ (d0

S)
TWSλ+ c0

S

(WSλ)
TQiWSλ+ (diS)TWSλ+ ciS ≤ 0, i = 1, . . . , p

(2)
AWSλ ≤ b− Av0, λ ∈ B

with

diS = di + 2Qiv0, i = 0, . . . , p

ciS = ci + vT0Qiv0+ (di)T v0, i = 0, . . . , p .

Each quadratic function of Problem (2) can be split into a convex and a concave
part. If we neglect the convex quadratic part and underestimate the concave part
with its convex envelope, we will get a linear underestimator for each quadratic
function.

Note that the convex envelope of a concave functionf over a simplexS is the
uniquely determined affine function which coincides with the functionf in each
vertex ofS (compare with Horst et al. [10]).

So we have for eachλ ∈ B andi ∈ {0, . . . , p}
f̄ iS(λ) := (WSλ)

TQiWSλ+ (diS)TWSλ+ ciS
= (WSλ)

T CiWSλ︸ ︷︷ ︸
≥0

+ (WSλ)
TDiWSλ︸ ︷︷ ︸
≥ϕiS(λ)

+(diS)TWSλ+ ciS

≥ ϕiS(λ)+ (diS)TWSλ+ ciS =: l̄iS(λ)
where

ϕiS(λ) :=
n∑
j=1

λj(vj − v0)
TDi(vj − v0)

is the convex envelope of(WSλ)
TDiWSλ overS.

By using the affine functions̄liS (i = 0, . . . , p), a linear programming relax-
ation of (2) is

min l̄0S(λ)

l̄iS(λ) ≤ 0, i = 1, . . . , p
(3)

AWSλ ≤ b− Av0, λ ∈ B .

REMARK 1. If we do not omit the convex quadratic part in underestimatingf̄ iS ,
we can get a convex relaxation of (2) in the same way.

Actually, Problem (3) is equivalent to the following problem

min l0S(x)

liS(x) ≤ 0, i = 1, . . . , p
(4)

Ax ≤ b, x ∈ S ,
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whereliS(x) :=
∑n

j=1(W
−1
S (x − v0))j (vj − v0)

TDi(vj − v0) + (diS)
T (x − v0)

+ ciS, i = 0, . . . , p, is the convex envelope of the quadratic concave function
f i(x)− (x − v0)

T Ci(x − v0) = (x − v0)
TDi(x − v0)+ (diS)T (x − v0)+ ciS .

REMARK 2. From an implementational point of view, Problem (3) is much easier
to solve than Problem (4). While solving (3) instead of (4) we do not need to
calculate the inverse ofWS , and the constraints descibingB are explicitly given
whereasS is given by its vertices. Problem (4), i.e., a formulation of the linear
relaxation of (1) in thex-space, is needed for the following theoretical analysis.

A necessary result for proving the convergence of our simplicial branch-and-bound
algorithm is the following lemma.

LEMMA 1. Let δ2(S) denote the squared diameter of the simplexS, i.e.,δ2(S) =
max{‖vi − vj‖22 , i, j ∈ {0, . . . , n} }, andρ(Ci) respectivelyρ(Di) the spectral
radius ofCi respectivelyDi (i = 0, . . . , p), i.e., ρ(Ci) = max{|λj(Ci)|, j =
1, . . . , n} ( λj(Ci) denotes thej -th eigenvalue ofCi), then for eachi ∈ {0, . . . p}
it holds

max
x∈S
|f i(x)− liS(x)| ≤ δ2(S)(ρ(Ci)+ ρ(Di)) . (5)

Proof. Let i ∈ {0, . . . , p} andx ∈ S be fixed. Then there exists a uniquely
definedλx ∈ B with f i(x) = f̄ iS(λx) andliS(x) = l̄iS(λx). By arguments similar to
those we used for(WSλ)

TDiWSλ andϕiS(λ), we know thatψi
S(λ) :=

∑n
j=1 λj(vj−

v0)
T Ci(vj − v0) is a linear overestimator of(WSλ)

T CiWSλ overB. So there holds

|f i(x)− liS(x)| = f̄ iS(λx)− l̄iS(λx)

= (WSλx)
T (Ci +Di)WSλx︸ ︷︷ ︸

≤∑n
j=1 λxj (vj−v0)

T Ci(vj−v0)

−
n∑
j=1

λxj (vj − v0)
TDi(vj − v0)

≤
n∑
j=1

λxj (vj − v0)
T (Ci −Di)(vj − v0)

≤
n∑
j=1

λxj‖vj − v0‖2ρ(Ci −Di)‖vj − v0‖2

≤ δ2(S)ρ(Ci −Di)

n∑
j=1

λxj︸ ︷︷ ︸
=1

≤ δ2(S)(ρ(Ci)+ ρ(Di)) .

Note that for symmetric matrices, the spectral radiusρ is a matrix norm which is
compatible with the Euclidean vector norm. 2
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REMARK 3. If we construct the matricesCi andDi by spectral decomposition
then it is possible to prove thatρ(Ci −Di) = ρ(Qi) holds. So we can replace the
righthand side of (5) byδ2(S)ρ(Qi).

3. A simplicial branch-and-bound algorithm

We now present a branch-and-bound scheme for solving Problem (1) (see Horst
and Tuy [12] for the theory and framework of general branch-and-bound algo-
rithms). As partition sets we use simplices and the branching procedure is based
on the subdivision of a simplexS into two simplicesS1 andS2 by bisection (for
the definition of simplex bisection see also [12]). This branching rule in connection
with the result of Lemma 1 will ensure the convergence of the algorithm. To each
simplex S, we assign a lower boundµ(S) for f 0 over S by solving the linear
program (4) with respect toS. Each generated feasible pointx ∈ D is used to get
an upper bound forf 0 overD. The algorithm is as follows.

ALGORITHM 1

Initialization
Determine a simplexS0 with S0 ⊃ P .
FLPS0 ← {x ∈ S0 ∩ P : liS0

(x) ≤ 0, i = 1, . . . , p}
If FLPS0 6= ∅ Then

Solve the LP minx∈FLP l0S0
(x) .

Let x0 be an optimal solution andµ(S0) be the optimal value.
µ0← µ(S0) , P ← {S0}
If x0 ∈ D Then

Q← {x0} , η0← f 0(x0) , xf ← x0

Else
Q← ∅ , η0←∞

EndIf
STOP← False, k← 0

Else
STOP← True (D = ∅)

EndIf

While STOP= False Do
If µk = ηk Then

STOP← True (xf is optimal solution of (1) )
Else

BisectSk into two simplicesS1
k andS2

k .
For j = 1 To 2

FLP
S
j
k
← {x ∈ Sjk ∩ P : liSjk (x) ≤ 0, i = 1, . . . , p}
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If FLP
S
j
k
6= ∅ Then

Solve the LP minx∈FLPj l0Sjk
(x) .

Let xjk be an optimal solution
andµ(Sjk ) be the optimal value.

If xjk ∈ D Then
Q← Q ∪ {xjk }

EndIf
P ← P ∪ {Sjk }

EndIf
EndFor
P ← P \{Sk}
If Q 6= ∅ Then

ηk+1← minx∈Q f 0(x), choosexf ∈ Q with ηk+1 = f 0(xf ) .
Else

ηk+1← ηk

EndIf
P ← P \{S ∈ P : µ(S) ≥ ηk+1}
If P 6= ∅ Then

µk+1← minS∈P µ(S) , chooseSk+1 ∈ P with µk+1 = µ(Sk+1)

andxk+1 ∈ Sk+1 ∩ P with µ(Sk+1) = l0Sk+1
(xk+1) .

Else
If Q 6= ∅ Then

µk+1← ηk+1

Else
STOP← True (D = ∅)

EndIf
EndIf
k← k + 1

EndIf
EndWhile

REMARK 4.
– It is possible that after a finite number of steps the algorithm never detects a

feasible pointxf ∈ D, i.e.,Q could always be empty.
– The bisection strategy has the property that for each infinite nested sequence
{Sq}q∈IN of simplices

δ2(Sq)→ 0 (q →∞) (6)

(see Horst [8]). As the proof of the convergence theorem shows, this property
is sufficient for the convergence of the algorithm. Therefore any branching rule
for simplices with the property (6) leads to a convergent algorithm.
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– In an implementation of the presented Algorithm 1 we do not solve Problem (4)
directly. As said in Remark 2 it is better to use the equivalent Problem (3).

4. Convergence

It is obvious that, when finite, the algorithm will determine an optimal solution.
For the infinite case, we will state and prove the following convergence theorem.
At first, however, one additional lemma is needed to establish this theorem.

LEMMA 2. The algorithm stops after a finite number of iterations if no feasible
point for Problem (1) exists, i.e., ifD = ∅.

Proof. F(x) := maxi=1,... ,p f
i(x) is a continuous function. SoF attains its

minimum over the compact setP . It follows forD = ∅
∃δ > 0 with min

x∈P F(x) ≥ δ . (7)

Assume now thatD = ∅ and the algorithm generates an infinite sequence{Sk}k∈IN

of simplices. Then there exists an infinite nested subsequence{Skq }q∈IN with the
properties

FLPSkq 6= ∅ ∀q ∈ IN and

δ2(Skq )→ 0 (q →∞) (compare with (6)).

Choose 0< δ̄ < δ[1/maxi=1,... ,p(ρ(C
i)+ ρ(Di))], then there exists aq0 ∈ IN

such thatδ2(Skq ) ≤ δ̄ (∀q ≥ q0). So due to Lemma 1, it follows forx ∈ FLPSkq
(q ≥ q0) andi ∈ {1, . . . , p}

f i(x) = f i(x)− liSkq (x)+ liSkq (x)︸ ︷︷ ︸
≤0

≤ δ2(Skq )(ρ(C
i)+ ρ(Di))

≤ δ̄(ρ(Ci)+ ρ(Di)) < δ .

ThusF(x) < δ holds which contradicts (7). 2

The convergence of the algorithm can now be shown.

THEOREM 1. If the algorithm generates an infinite sequence{xk}k∈IN, then every
accumulation pointx? of this sequence is an optimal solution of Problem (1).

Proof. Due to Lemma 2, we know that there exists an optimal solutionx̄ of
Problem (1) with optimal valuēf 0. Since we always choose the simplexSk where
µ(Sk) is smallest, we have thatµ(Sk) is a lower bound forf 0(x) overD and
{µ(Sk)}k∈IN is a nondecreasing sequence which is obviously bounded from above
by f̄ 0.

Let x? be an accumulation point of the sequence{xk}k∈IN and let{xkq }q∈IN be a
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subsequence converging tox?. Without loss of generality, we assume that{Skq }q∈IN

is a nested sequence of simplices. With respect to Lemma 1 in connection with the
property (6), we know fori ∈ {0, . . . , p}

0≤ f i(xkq )− liSkq (xkq ) ≤ δ2(Skq )(ρ(C
i)+ ρ(Di))→ 0 (q →∞) .

Sincef 0(x) is a continuous function, we have

f̄ 0 ≥ µ(Skq ) = l0Skq (xkq )→ f 0(x?) (q →∞) (8)

and by the same arguments fori ∈ {1, . . . , p}
0≥ liSkq (xkq )→ f i(x?) (q →∞) . (9)

Thus we have proved thatx? is feasible, i.e.,f i(x?) ≤ 0 (i = 1, . . . , p)
(compare with (9)), andf 0(x?) ≤ f̄ 0 (compare with (8)). Therefore,x? is an
optimal solution of Problem (1). 2

If we are satisfied with an approximate solution, we could replace the stopping
criterion

If ηk = µk Then STOP← True

by the following

If Q 6= ∅ Then

If ηk − µk ≤ ε Then STOP← True (10)

Else

If δ2(Sk) max
i=0,... ,p

(ρ(Ci)+ ρ(Di)) ≤ ε Then STOP← True (11)

EndIf
for some prespecified toleranceε.

If the algorithm stops with (10), anε-optimal solution has been found,
i.e., a pointxf ∈ D with f 0(xf )− f̄ 0 ≤ ε, wheref̄ 0 denotes the optimal value of
Problem (1).

In the other case, the algorithm has not found a feasible point till
iteration k. Due to Lemma 1, we only know that the pointxk is
ε-feasible, i.e.,f i(xk) ≤ ε , i = 1, . . . , p, and thatf 0(xk) − µk = f 0(xk) −
l0Sk (xk) ≤ ε. We do not know anything about the optimality ofxk.

Under the assumption that a feasible pointx̄ of Problem (1) is known, we can
initializeQ with the pointx̄. Then the algorithm surely stops after a finite number
of steps with a feasible pointxf ∈ D which isε-optimal.
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In the following section, we will demonstrate the better performance of the pre-
sented simplicial branch-and-bound algorithm in comparison with the performance
of the rectangular version of Al-Khayyal et al. [2].

5. Computational results

The presented simplicial algorithm and the rectangular algorithm of
Al-Khayyal et al. were encoded in C++ with management of partition sets by
AVL-trees. To test and compare the computational performance of both algorithms,
problems of varying sizes were randomly generated and solved. The test problems
had the general form (1), where most of the parameters were integers randomly
generated according to the following specifications.

First a dense matrix̄A ∈ IR2n×n was generated with entries between−10 and 10.
Then the righthand side vectorb̄ ∈ IR2n was constructed in a way which guaranteed
that the polyhedronP̄ = {x ∈ IRn : Āx ≤ b̄} was not empty. To ensure the
boundedness ofP , we then intersected̄P with the simplexSn = [0, ne1, . . . , nen]
(ei denotes thei-th unit-vector), so that for the describing matrixA of P , A ∈
IR(3n+1)×n holds. Note that we iterate the construction of the polytopesP̄ until
a polytope with intP = int(Sn ∩ P̄ ) 6= ∅ was found. Because of the special
construction ofb, we could find a point̄x ∈ intP = {x ∈ IRn : Ax < b}.

In the next step, dense matricesQi ∈ IRn×n and vectorsdi ∈ IRn

(i = 0, . . . , p) were also randomly generated with entries between−10 and 10.
The coefficientsci ∈ IR (i = 1, . . . , p) were chosen in a way to assure that
f i(x̄) ≤ −δ < 0 (i = 1, . . . , p) holds for some prespecified valueδ.

Through this strategy, we obtained test problems with a nonempty feasible re-
gionD, even with intD 6= ∅. For solving these test problems with the two proposed
algorithms, we had to construct a starting rectangleR0 with R0 ⊃ P , and a starting
simplexS0 with S0 ⊃ P , respectively (refer to [10] or [16] for the construction
of such initial sets). To avoid excessive run-time requirements we restricted our
test problems to problems with the property that a starting simplex with a diameter
smaller than 10 exists.

The implementation of both algorithms used to solve the described randomly
generated problems closely follows the algorithms which were presented in [2] and
earlier in this paper. As branching rule, we used bisection in both cases, i.e., each
rectangle or simplex was partioned into two rectangles or two simplices by dividing
the longest edge in its midpoint.

In the simplicial branch-and-bound algorithm, we added the following cheap
test to decide whetherD ∩ S = ∅ holds for a given simplexS = [v0, . . . , vn].

max
i=1,... ,p

min
j=1,... ,n

(vj − v0)
T Di(vj − v0)+ (diS)T (vj − v0)+ ciS > 0

(12)⇒ D ∩ S = ∅
(see [16] for details). If the left-hand side of (12) is satisfied,S can be eliminated
from the collectionP of partition sets.
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As noted in the previous section, to achieve an approximate solution with the
simplicial algorithm, branching may be stopped if (10) or (11) is satisfied. A similar
ε-convergence criterion is known for the rectangular algorithm (refer to [2]). We
usedε = 10−4 in the computational tests and each pointxk which satisfied all
quadratic constraints with a tolerance valueδ = 10−6 was interpreted as feasible.

Fifty test problems were generated for each combination of
n ∈ {2, . . . ,8} andp ∈ {1, . . . ,2n}. With respect to the sparse structure of the
linear subproblems in the rectangular algorithm (see [2] for details) we applied
MINOS 5.4to solve them. We also implemented versions of both algorithms us-
ing the LP-subroutineE04NFFof theNAG-library, which does not exploit sparse
structures of optimization problems. The subproblems of the simplicial algorithm
in general have a dense structure and so it does not matter which LP-solving-
routines are applied. Computational tests have shown that the simplicial algorithm
is faster with theNAG-library than withMINOS 5.4, at least for small dimensions
(n ≤ 6). However the rectangular algorithm is much slower. In order to achieve
comparable results, we present only the computational tests whereMINOS 5.4is
used for both algorithms.

REMARK 5.
– As noted in section 2, it is also possible to construct a simplicial branch-and-

bound scheme with quadratic convex subproblems. We tested this version by
using theMINOS 5.4 convex solver. Even though the necessary number of
iterations decreased, the run-time increased so much, that the version with linear
subproblems is essentially faster.

– We also tried to solve the Packing-Problem with these general algorithms. Be-
cause of the high dimension and the big number of constraints, both algorithms
have shown very bad performance. By exploiting the special structure of this
problem, it is possible to develop a more efficient algorithm. This will be dis-
cussed in a future paper.

Tables 1 and 2 show some numerical results for the generated test problems run
on aSUN SPARCserver 1000workstation. We use the abbreviations NoP S<R for
the number of problems where the simplicial algorithm was faster than the rectan-
gular one, AvgNoLP for the average number of LP’s solved for each test problem
with the simplicial algorithm (S) or the rectangular algorithm (R), STDLP for the
standard deviation of the number of LP’s, AvgTime for the average computing time
in seconds necessary for solving a problem, Su for the average speedup between
the simplicial and the rectangular version and STDTime for the standard deviation
of the computing time.

The numerical results show that forp ≥ n the simplicial algorithm is nearly
always faster with respect to average run-time than is the rectangular algorithm.
Only for the combinations withp ≤ max{1, bn2c − 1} does the rectangular version
need less time in more than 50% of the test examples. For fixedn the relative
performance of the presented algorithm improves with growingp (compare with
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Table 1. All test results forn = 2, 3,4

p NoP AvgNoLP STDLP AvgTime Su STDTime

S<R S R S R S R S R

n = 2

1 15 45.6 24.7 2.71 2.29 0.2 0.18 0.9 0 0.01

2 32 43.6 27.9 2.82 2.16 0.22 0.26 1.19 0.01 0.01

3 48 66.7 45.4 4.91 2.53 0.28 0.46 1.64 0.01 0.02

4 46 61.4 39.9 4.02 1.91 0.28 0.5 1.79 0.01 0.02

n = 3

1 19 127.2 54.6 12 4 0.64 0.52 0.81 0.06 0.03

2 38 151.7 69.3 23.1 6.72 0.76 0.98 1.29 0.1 0.09

3 46 194.6 86.2 23.5 7.61 1.02 1.63 1.6 0.09 0.14

4 49 147.4 69.9 10.9 3.44 0.78 1.56 2 0.05 0.07

5 46 169.4 76.7 15.4 3.18 0.98 2.19 2.23 0.11 0.1

6 50 178.2 83.1 12.9 3.87 1.02 2.92 2.86 0.07 0.16

n = 4

1 18 322.6 98.4 48.9 11.83 1.91 1.37 0.72 0.27 0.16

2 36 341.7 101.1 47.8 10.42 2.08 2.19 1.05 0.27 0.26

3 40 337.6 113.7 57.1 9.4 2.2 3.44 1.56 0.35 0.33

4 47 603.5 176.7 118.7 26.13 4.09 7.4 1.81 0.76 1.06

5 50 356.2 125.3 37.7 7.27 2.4 6.7 2.79 0.24 0.49

6 48 726.3 176.4 239 25.99 6.13 13.41 2.19 2.44 2.43

7 50 428.7 155.9 44.1 12.6 3.23 12.42 3.85 0.33 1.01

8 49 415.8 134.5 57.2 6.75 3.25 13.22 4.07 0.42 0.82

the speedup column in Tables 1 and 2). In the cases wherep = 2n, it outperforms
the rectangular version. It is then up to four times faster.

For solving the test problems, the simplicial algorithm needs many more LP’s
than the rectangular one and this rate increases with growing dimension. There
is at least one reason for this effect. In constructing the LP-relaxation of the all-
quadratic program in Section 2, we neglect the convex information of the trans-
formed problem (2), whereas Al-Khayyal et al. do not. They use all available
information to generate their lower bounds. Therefore it is not surprising that the
lower bounds used in the rectangular version are better than those in our algorithm.
But even though the number of LP’s increased, the reduction in the complexity of
each linear subproblem (smaller dimension and fewer constraints) led to a decrease
in run-time.

Figures 1 and 2 illustrate the computational results. In Figure 1 the numbers
of test problems where the simplicial algorithm was faster than the rectangular
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Table 2. Some test results forn = 5, 6,7, 8

p NoP AvgNoLP STDLP AvgTime Su STDTime

S<R S R S R S R S R

n = 5

2 27 962 179 207.1 22.1 7.6 5.7 0.75 1.5 0.7

4 40 1099 221 210.2 30.3 9.9 14.1 1.42 1.8 2.1

6 48 1033 237 148.9 24.5 10.4 24.9 2.39 1.5 2.3

8 48 1327 275 194.1 31.7 14.6 39.5 2.71 2.2 4.1

10 50 850 218 114.4 12.4 10.4 42.4 4.08 1.4 2.4

n = 6

4 35 5407 378 2114 48.1 59.3 37.6 0.63 21.3 4.3

8 46 4314 463 865.6 50.4 60.9 110.2 1.81 12.1 11.7

12 49 3594 451 561.9 36.6 60.1 189.1 3.15 9.2 16.1

n = 7

4 26 12928 634 5565 136.8 180 86.8 0.48 77.9 17.8

8 39 9617 751 1665 85.2 170 252 1.48 28.8 27.7

12 49 8985 677 1652 76.3 198 417 2.11 37.2 41.9

n = 8

4 26 14272 686 3687 56.3 262 137 0.52 68.8 11.4

8 35 33256 1326 8469 180.9 764 672 0.88 194.4 87.1

12 42 20537 1171 3378 112.3 594 1054 1.77 91.9 91.1

16 47 21862 1270 4016 149.8 726 1797 2.48 137.9 200

one are displayed in percent. Figure 2 shows the speedup coefficients for all tested
combinations of the dimensionn and the number of quadratic constraintsp. Al-
though both graphics show that the relative performance of the rectangular version
improves with growing dimension and small numbers of quadratic constraints, they
emphasize that for higher numbers of quadratic constraints the performance of the
simplicial approach is much better.

The numerical results also show that the effort for solving Problem (1) depends
essentially on the dimension and the number of quadratic constraints. But an inter-
esting result of our numerical tests is that the run-time of the simplicial algorithm is
by far less sensitive to the number of quadratic constraints than the run-time of the
rectangular one. For example, in the test problems with dimension 8, the average
run-time of the simplicial algorithm grows by a factor of nearly 3, whereas the
average run-time of the rectangular version grows by a factor of nearly 40.
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Figure 1. Simplicial algorithm faster than rectangular one.
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Figure 2. Speedup.

Another result of our computational tests is that for problems with dense struc-
ture and a dimension higher than 8, both algorithms do not seem to be attractive,
because they require excessive run-time.
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6. Conclusion

In this paper we have developed a convergent algorithm for solving nonconvex all-
quadratic optimization problems. This algorithm can be regarded as a combination
of an outer approximation (construction of LP-relaxations of Problem (1) with
respect to a givenn-simplexS) and a simplicial branch-and-bound scheme. Com-
prehensive computational results have shown that for small numbers of quadratic
constraints (small with respect to the dimension), a comparable rectangular branch-
and-bound scheme seems to be a faster approach, whereas for higher numbers
of quadratic constraints the presented simplicial algorithm often outperforms this
rectangular version. The performance of the suggested algorithm depends heavily
on the upper bound (mimimal function value of all found feasible points), as is the
case for most branch-and-bound algorithms. One way to improve the performance
of this simplicial branch-and-bound algorithm could be the development of cheap
strategies for detecting additional feasible points.
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